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Abstract

An object colour’s CIE XY Z coordinates can change when it is viewed
under different illuminants. The set of XY Z coordinates for all object colours,
which is called the object-colour solid, likewise varies under different illumi-
nants. This paper shows that, despite these changes, some properties are in-
variant under illuminant transformations. In particular, as long as the illu-
minant is nowhere zero in the visible spectrum, optimal colours take the same
Schrödinger form, and no two optimal colours are metameric. Furthermore,
all object-colour solids have the same shape at the origin: they all fit perfectly
into the convex cone (which we will call the spectrum cone) generated by the
spectrum locus. The spectrum cone, itself, does not vary when the illuminant
changes. The object-colour solid for one illuminant can be transformed into the
solid for another illuminant, by an easily visualized sequence of expansions and
contractions of irregular rings, called zones.

Keywords: colour solid, illuminant, spectrum locus, spectrum cone,
optimal colour, zonohedron

1 Introduction

An illuminant can have a significant effect on colour vision, and on computations
for colour processing. When viewing an object, the stimulus that reaches the eye
is a combination of the illumination and that object’s reflectance function. From
the visual stimulus alone, there is no a priori way of disentangling the illuminant’s
contribution from the object colour’s contribution.
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Despite these difficulties, this paper will present some colour properties that are
independent of illuminant. The invariance will be shown using geometric construc-
tions based on the CIE colour-matching functions.1 The constructions are all located
in the positive octant of R3, and involve the three CIE coordinates denoted X, Y,
and Z. Only vector space properties of R3 are needed; no Euclidean notions such
as distance or angle are required. The subset of R3 that contains visual stimuli is
generated by positive linear combinations of XY Z coordinates for monochromatic
stimuli. The XY Z coordinates for a monochromatic stimulus are called a spectrum
locus vector, and the set of all such vectors is called the spectrum locus. The convex
cone generated by the spectrum locus will be called the spectrum cone, and every
visual stimulus is located somewhere in this solid cone. This spectrum cone is an
invariant: it does not change even when the illuminant changes.

Another important construction in R3 is an object-colour solid. Every illuminant
has a corresponding object-colour solid, which is the set of all XY Z vectors that
can result from an object colour, when lit by that illuminant. Geometrically, an
object-colour solid is the zonohedron generated from the spectrum locus vectors
for an illuminant. From this zonohedral structure, one can conclude that optimal
colours, which are the colours on the boundary of the solid, all have reflectance
functions in Schrödinger form: the reflectance percentage for any wavelength is either
0 or 100%, with at most two transitions between these two values. This form is
also an invariant: no matter what the illuminant, optimal colours have Schrödinger
reflectance functions. Furthermore, no two optimal colours are metameric, again
regardless of illuminant.

Finally, the zonohedral structure provides a geometrically intuitive way of trans-
forming the object-colour solid for one illuminant into the solid for another illu-
minant. The transformation involves zones, which take the form of irregular rings
around the solid, and consist of translations of the spectrum locus vectors. To trans-
form a solid, each zone is stretched or compressed in sequence. The magnitude of
the stretch or compression depends on the relative magnitudes of the spectrum locus
vectors for the two illuminants. It is shown geometrically that this transformation
sequence does not affect the shape of an object-colour solid at the origin, nor at the
white point. In addition, it is shown that every object-colour solid fits perfectly into
the spectrum cone at the origin, regardless of the illuminant, so that fact constitutes
another invariant.

These statements of invariance should be qualified by a mild assumption on the
illuminant. It will be assumed throughout this paper that the illuminant is nowhere
zero. In other words, it has some power in every part of the visible spectrum. This
assumption is true of the broadband illuminants which are typically encountered in
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natural situations. If an illuminant were zero somewhere in the visible spectrum,
then a viewer would be effectively blind to reflectance functions that were non-zero
only where the illuminant is zero. In order to consider the entire visible spectrum,
then, we assume that illuminants are nowhere zero.

2 Geometric Colour Constructions

2.1 XY Z Tristimulus Space

A visual stimulus consists of a distribution, δ(λ), of electromagnetic power, between
about 400 and 700 nm (the visible spectrum), that impinges on an eye. If the
distribution is constant over a reasonably sized area of the visual field, and does not
vary over time, then a human will attribute a colour to that area. It is possible that
two different areas, despite having different spectral distributions, will have the same
colour. In 1931, the Commission Internationale de l’Éclairage1 (CIE) experimentally
determined three colour-matching functions, called x̄(λ), ȳ(λ), and z̄(λ), from which
three tristimulus values can be computed for any δ(λ) :

X =

∫ 700

400

x̄(λ)δ(λ)dλ, (1)

Y =

∫ 700

400

ȳ(λ)δ(λ)dλ, (2)

Z =

∫ 700

400

z̄(λ)δ(λ)dλ. (3)

Two colour stimuli, δ1(λ) and δ2(λ), are perceived as identical if and only if their
three tristimulus values are equal.

Leaving aside special cases such as fluorescence, the term colour can be applied to
either light sources or objects. A light source can impinge directly on an eye, without
reflecting off any intermediate objects; in that case, the spectral distribution of the
stimulus is just the spectral distribution of the light source itself. An object, on the
other hand, can be seen only when illuminated by a light source. An object reflects
different percentages of different wavelengths that impinge upon it. An object’s
colour properties are summed up by its reflectance function, r(λ), which is bounded
between 0 and 100%. An object is visible when rays from a light source, say of
distribution s(λ), reflect off the object, of reflectance function r(λ), before reaching
the eye. Since the object reflects different percentages of the light, depending on
wavelength, the stimulus that reaches the eye has a new distribution, given by δ(λ) =
r(λ)s(λ).
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Because of these differences, the CIE tristimulus values defined in Equations (1) to
(3) are applied only to light sources, while modified tristimulus values are applied to
object colours. The modified values account for two facts. First, reflectance functions
have a natural maximum, that occurs when r(λ) is identically 100%. Perceptually, an
object that reflects 100% of light of any wavelength, is an ideal white. Second, human
perception involves lightness adaptation, in which the lightness of any object colour
is judged relative to white. The second colour-matching function, ȳ(λ), was specially
chosen to incorporate lightness information. To account for lightness adaptation, the
tristimulus values for an object colour are normalized by dividing by the maximum
possible lightness:

X =

∫ 700

400
x̄(λ)r(λ)s(λ)dλ∫ 700

400
ȳ(λ)s(λ)dλ

, (4)

Y =

∫ 700

400
ȳ(λ)r(λ)s(λ)dλ∫ 700

400
ȳ(λ)s(λ)dλ

, (5)

Z =

∫ 700

400
z̄(λ)r(λ)s(λ)dλ∫ 700

400
ȳ(λ)s(λ)dλ

. (6)

With these definitions, the Y -value for ideal white is always 1, and the Y -value for
any other colour is always less than 1.

To simplify expressions throughout this paper, we will often assume, without any
loss of generality, that s(λ) has been multiplied by an appropriate scalar to produce
a normalized light source, sn(λ), such that∫ 700

400

ȳ(λ)sn(λ)dλ = 1. (7)

This simplification eliminates the denominators from Equations (4) through (6).
It is natural to plot XY Z coordinates in R3. Since reflectance functions, spec-

tral distributions, and colour-matching functions are all non-negative, it follows that
any tristimulus value, for either a light source or an object colour, is non-negative.
Therefore, we may restrict XY Z coordinates to the positive octant of R3. In addi-
tion to being a coordinate system, R3 can also be viewed as a vector space, with
the standard linear addition and scalar multiplication of vectors. The vector space
structure will give insight into colour relationships.

The set of spectral distributions can be viewed as a subset (though not a subspace)
of the vector space of functions over the interval from 400 to 700 nm. This vector
space is infinite-dimensional, but in practice it can be approximated adequately by a
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finite-dimensional space. A natural approach, which we shall follow here, is to divide
the interval [400, 700] into N channels of equal width. For practical purposes, 30
channels, each of which is 10 nm wide, is usually sufficient. A useful “basis” then
consists of the 30 functions which are 1 on one of the 30 channels, and 0 elsewhere.
Formally, the basis function for the ith channel can be written as

∆i(λ) =

{
1(in some units), if λ is in the ith channel,
0, otherwise.

(8)

Of course finer divisions, say into 50 or 100 channels, can also be used. This “basis”
is not a vector space basis, but it will be seen that it has similar properties.

Similarly, denote the reflectance basis functions for the ith channel by

Ri(λ) =

{
1, if λ is in the ith channel,
0, otherwise, (9)

and the source basis functions by

Si(λ) =

{
1(in some units), if λ is in the ith channel,
0, otherwise,

(10)

Since Ri(λ) is a ratio rather than a quantity, no units are needed. Although the
functions in Equations (8) through (10) are formally identical, they are different in
both conceptual and practical terms.

With these vector space structures, the assignment of tristimulus values for light
sources, given in Equations (1) to (3), is a linear transformation. The “sum” of two
sources, s1(λ) and s2(λ), would be s1(λ) + s2(λ). The tristimulus values, (X1, Y1, Z1)
and (X2, Y2, Z2), of the two sources, would be added as vectors in R3, to get (X1 +
X2, Y1 + Y2, Z1 + Z2), which are the trisitmulus values of s1(λ) + s2(λ). If one fixes
a light source, s(λ), then it can similarly be seen that the assignment of tristimulus
values for object colours, given in Equations (4) to (6), is also a linear transformation.
Two reflectance functions, r1(λ) and r2(λ), can only be “added” in this case if their
total value at any wavelength λ is 1 or less. This will always be the case for basis
functions, no two of which are positive on the same channel.

The addition of two light sources is easily interpreted physically. For example, one
could simultaneously turn on an incandescent and a fluorescent bulb: the resulting
light would be the sum of the lights from the two bulbs individually. Object colours
cannot be added in the same sense. For example, suppose there were two paints,
with reflectance functions r1(λ) and r2(λ). Then a third paint would be the sum of
the first two, if it had reflectance function r1(λ) + r2(λ). In general, of course, there
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is no way to combine the first two paints to get such a third paint. The two paints
can be added formally, however, which is sufficient for our purposes.

It is tempting to impose the standard Euclidean inner product on the vector space
of XY Z coordinate vectors. For example, one typically draws the X, Y, and Z axes
at right angles. Apart from convenience, this practice has no physical or perceptual
justification, because the choice of the basis X, Y, and Z is arbitrary. Accordingly,
no notion of angle or distance should be attached to XY Z space a priori. The vector
space does, however, have a natural structure as a differentiable manifold, obtained
by pulling back the differential structure on R3, along the coordinate assignment
map. Thus, it is possible to apply concepts from calculus, such as the tangency of
curves through the same point. The vector space structure, given by vector addition
and scalar multiplication, along with the differentiable structure, is sufficient to derive
invariants of illuminant transformations.

2.2 The Spectrum Locus and the Spectrum Cone

The set of XY Z vectors that can result from an arbitrary visual stimulus, δ(λ), is
called the spectrum cone. The spectrum cone is the image of all visual stimuli under
the linear transformation given by the colour-matching functions. An XY Z stimulus
vector corresponding to a basis function ∆i(λ) is called a spectrum locus vector. The
set of all spectrum locus vectors is called the spectrum locus. It will be seen that the
spectrum cone is the convex cone generated by the spectrum locus.

Spectrum locus vectors are interpreted differently for arbitrary visual stimuli, and
for stimuli that result from object colours. For an arbitrary visual stimulus, the ith
spectrum locus vector, σi, is given by σi = (Xi, Yi, Zi), where

Xi =

∫ 700

400

x̄(λ)∆i(λ)dλ, (11)

Yi =

∫ 700

400

ȳ(λ)∆i(λ)dλ, (12)

Zi =

∫ 700

400

z̄(λ)∆i(λ)dλ. (13)

Since ∆i(λ) can be defined with arbitrary units, the magnitude of σi is correspond-
ingly arbitrary, although its direction is fixed.

Visual stimuli can be considered as a subset, consisting of positive functions, of
the vector space of all functions on [400, 700]. The set of positive functions is not
a vector subspace, so it does not have a basis in the standard sense. It is possible,
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however, to express any visual stimulus as a non-negative sum of the basis functions
∆i(λ), defined in Equation (8). Formally, any δ(λ) can be approximated by

δ(λ) ≈
N∑
i=1

αi∆i(λ), αi ≥ 0 ∀i. (14)

Applying Equations (11) through (13) to Equation (14) gives an expression for δ(λ)
in XY Z coordinates:

(Xδ, Yδ, Zδ) ≈
N∑
i=1

αiσi. (15)

In any vector space V, the convex cone C, generated by a set of vectors {vi ∈
V, i = 1..n}, is

C =

{
n∑
i=1

αivi

∣∣∣αi ≥ 0 ∀i

}
. (16)

Geometrically, each vector vi lies on a unique positive ray that starts at the origin and
continues to infinity. The coefficient αi, which is non-negative, specifies a location on
this ray. The summation in Equation (16) constructs the convex hull of these rays.
Though it is called a “cone,” a convex cone is probably not circular, but is more likely
to be some irregular shape. Its vertex is always at the origin of V, and it is a filled
solid.

A comparison of Equations (15) and (16) shows that the convex cone of the
spectrum locus vectors is identical with the set of all visual stimuli. In XY Z space,
then, the set of all visual stimuli is an irregular cone whose vertex is at the origin.
Figure 1 shows the spectrum locus, consisting of the XY Z vectors corresponding to
the individual functions ∆i(λ), and Figure 2 shows the resulting convex cone. For a
more descriptive three-dimensional interpretation, Figure 2 plots the intersection of
the spectrum cone with the unit cube.

While the direction of the vectors in Figure 1 is important, no importance should
be attached to their magnitudes. The reason is that any function ∆i(λ) could be
replaced with αi∆i(λ), where αi > 0. This replacement would not change the shape
of the spectrum cone in Figure 2. Though it is drawn as a finite set, the spectrum
cone in Figure 2 in fact is infinite, extending arbitrarily far from the origin.

2.3 Object-Colour Solids

The previous section considered the spectrum locus for arbitrary visual stimuli. It is
also possible to consider the spectrum locus, when restricted to visual stimuli that
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Figure 1: The Spectrum Locus

result from object colours, in the presence of a fixed illuminant. The assumption of a
fixed illuminant is often physically realistic, as it simply says that the ambient light
is not varying.

A visual stimulus δ(λ) that results from an object colour, can be expressed as

δ(λ) = sn(λ)r(λ). (17)

The set of all object colours corresponds to the set of all reflectance functions. Any
reflectance function r(λ) can be approximated by

r(λ) ≈
N∑
j=1

αjRj(λ), 0 ≤ αj ≤ 1 ∀j, (18)

and the normalized illuminant can be approximated by

sn(λ) ≈
N∑
j=1

βjSj(λ), βj > 0 ∀j. (19)

Substituting Equations (18) and (19) into Equation (17) gives

δ(λ) ≈
N∑
j=1

αjβjSj(λ)Rj(λ), 0 ≤ αj ≤ 1 ∀j. (20)
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Figure 2: The Spectrum Cone

The ith spectrum locus vector, τi, when considering object colours, is the XY Z
expression of the reflectance function Ri(λ), which is 100% on the ith channel, and
0 elsewhere. In Equation (20), this function is achieved when αi = 1 and all other
α’s are 0, simplifying to

δ(λ) ≈ βiSi(λ). (21)

By a direct calculation, τi is given by (Xi, Yi, Zi) , where

Xi = βi

∫ 700

400

x̄(λ)Si(λ)dλ, (22)

Yi = βi

∫ 700

400

ȳ(λ)Si(λ)dλ, (23)

Zi = βi

∫ 700

400

z̄(λ)Si(λ)dλ. (24)

No denominators appear in this expression, because the illuminant has been normal-
ized.

By comparing Equations (22) through (24) to Equations (11) through (13), and
using the fact that Si(λ) and ∆i(λ) are formally equivalent, we see that, for every i, σi
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and τi are in the same direction, but might differ in magnitude. While the magnitude
of a spectrum locus vector is arbitrary for a general visual stimulus, the spectrum
locus vector for an object colour is as long as possible, when using a fixed illuminant.
The vectors in Figure 1, for example, are the longest that could be obtained when
Illuminant C impinges on an object colour.

An object-colour solid, for a fixed illuminant, is the set of all XY Z vectors that
can result when that illuminant impinges on a surface. Equation (18) expresses an
arbitrary reflectance function in terms of coefficients between 0 and 1. For a light
source, by contrast, the coefficients could be any non-negative numbers. It follows
from linearity, and the derivation of the spectrum locus vectors, that the set of all
XY Z vectors resulting from object colours is given by

Object-Colour Solid =

{
N∑
i=1

αiτi

∣∣∣0 ≤ αi ≤ 1 ∀i

}
. (25)

Rather than being a convex cone, an object-colour solid is the zonohedron gener-
ated by the spectrum locus vectors for a fixed illuminant. Each illuminant therefore
has its own object-colour solid. Reference 2 presents more details of zonohedral con-
structions. As an example, Figure 3 shows the zonohedral object-colour solid for
Illuminant C, when N = 30.

Zonohedra have a considerable amount of structure, that is relevant to illuminant
transformations. In particular, each edge of a zonohedron is a translated copy of
one of the generating vectors, so each edge of an object-colour solid is a translated
spectrum locus vector. If no three spectrum locus vectors are linearly independent,
then each face of an object-colour solid is a parallelogram.3

These observations allow a zone to be defined as follows: If an edge of a zono-
hedron is chosen, then the zone corresponding to that edge is the set of all the
zonohedron’s faces, at least one of whose edges is a translated copy of the original
edge. Figure 4 shows an example. The figure shows a simple zonohedron, constructed
from four generating vectors, v1 through v4. Generating vector v2 can be seen em-
anating from the origin. All the parallelogram faces that have a copy of v2 on their
boundary have been highlighted in grey. The zone makes an irregular ring around
the zonohedron.

Any zone can be constructed in steps, starting from one edge. Choose a face, F1,
which contains that edge. Since F1 is centrally symmetric, there is a corresponding
copy of the starting edge, on the opposite side of F1. In addition to F1, another face,
F2, will contain the new edge. On the opposite side of F2 is another copy of the
edge, which joins another face, F3. Continue in this fashion until the original edge
is returned to; since there are only finitely many edges, a return is certain. The
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Figure 3: Zonohedral Object-Colour Solid for Illuminant C

set of all faces traversed in this journey is a zone. Furthermore, a zone contains
every copy of the original edge that occurs on the boundary of the zonohedron. Each
parallelogram face belongs to two zones, and any two zones contain a pair of faces (on
opposite sides of the zonohedron) in common. In many zonohedra, and in particular
in zonohedral object-colour solids, every zone contains a face, one of whose vertices
is the origin. We will use zones in the next section, to describe geometrically how to
transform from the object-colour solid for one illuminant, to the object-colour solid
for another illuminant.

Every vertex of a zonohedron is a sum of generating vectors, but not all sums of
generating vectors appear on the boundary. For example, v1 + v3 and v2 + v4 in
Figure 4 are both in the interior. A sum of generating vectors is on the vertex if and
only if the set of vectors in the sum consists of all the vectors on one side a plane
through the origin.

3 Illuminant Transformations

Suppose that the CIE coordinates of an object colour, when viewed in a certain
illuminant, are given by (X1, Y1, Z1). When the illuminant is changed, the same

11 c© 2012 Paul Centore



PAUL CENTORE

v1

v2

v3

v4

v1+ +v2 v3 v4+

0

v1+v2
v1+v4

v1+ +v2 v4

v1+ +v2 v3

v3+v4

v1+ +v3 v4

Figure 4: Example of a Zone

object colour will likely have different CIE coordinates, (X2, Y2, Z2). Likewise, the
object-colour solid of the first illuminant will differ from the object-colour solid of
the second illuminant. Despite these changes, some colour properties will remain
invariant even when the illuminant changes. In particular, optimal colours will retain
their Schrödinger form, and no two optimal colours will be metameric. In addition,
all object-colour solids will fit flushly into the spectrum cone at the origin, although
away from the origin they will have different shapes. The spectrum cone, itself, will
not change when the illuminant changes. This section will prove these statements,
and in addition will demonstrate a geometrically natural way to transform one object-
colour solid into another. A technical condition is necessary for most of these results:
we will assume throughout this section that the illuminants we use are nowhere zero
on the visible spectrum.

3.1 Invariance of the Spectrum Cone

Though the spectrum locus changes when the illuminant changes, the spectrum cone
does not. The reason is that the illuminant affects the magnitudes of spectrum
vectors, but not their directions. The spectrum cone is the convex cone defined by
Equation (16). If any vi were replaced by a positive multiple of vi, the set C would be
identical. Replacement by a positive multiple changes magnitude, but not direction,
and only direction is needed to define a convex cone.
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We will now show that the ith spectrum locus vectors, for any two nowhere-
zero illuminants, differ only in magnitude. Equations (22) through (24) give the
XY Z coordinates for the spectrum locus vector for the ith channel, for a particular,
normalized illuminant sn(λ). Now let us consider a second illuminant, tn(λ), also
normalized. In analogy to Equation (19), we can write

tn(λ) ≈
N∑
j=1

γjSj(λ), γj > 0 ∀j. (26)

By following through the derivation of Equations (22) through (24), using Equation
(26), we get a new set of spectrum locus vectors:

Xit = γi

∫ 700

400

x̄(λ)Si(λ)dλ, (27)

Yit = γi

∫ 700

400

ȳ(λ)Si(λ)dλ, (28)

Zit = γi

∫ 700

400

z̄(λ)Si(λ)dλ. (29)

Taking the ratio of the components of the two spectrum locus vectors,
Xit

Xi

=
Yit
Yi

=
Zit
Zi

=
γi
βi
. (30)

Since these ratios are constant, therefore the vectors are in identical directions, but
differ only in magnitude. The directions of spectrum locus vectors are therefore
invariant under an illuminant transformation. It follows that the spectrum cone,
which is the convex cone generated by the spectrum locus vectors, is also invariant
under an illuminant transform, as was to be shown.

The invariance of the spectrum cone requires a nowhere-zero illuminant. If one
illuminant were zero in some channel, then its spectrum locus vector for that channel
(for both light sources and object colours) would also be zero. Other illuminants,
however, would not be zero on that channel, so they would have non-zero spectrum
locus vectors for that channel. The convex cones they generate would contain those
spectrum locus vectors, but the convex cone for the original illuminant would not
contain them. Thus the spectrum cones would differ, and invariance would not hold.

3.2 Invariance of Optimal Colours

Originally, an optimal object colour was defined as a colour of maximal luminosity,
given its chromaticity.4 An important result is the Optimal Colour Theorem,4,5 which
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states that an object colour is optimal if and only if its reflectance function has
Schrödinger form, that is, it takes on only the values 0 and 100%, with no more
than two transitions between those values. A modern definition, equivalent to the
original one, is that an optimal colour is any colour whose XY Z coordinates are on
the boundary of the object-colour solid.2 Since the object-colour solid will change
when the illuminant changes, it would seem that different illuminants would lead
to different optimal colours. In fact, this is not the case. We will show that the
reflectance functions of optimal colours always have Schrödinger form, regardless
of the illuminant (under the assumption that the illuminant is nowhere zero). In
addition, we will show that no two Schrödinger reflectance functions are metameric,
again regardless of the illuminant.

A recent proof2 of the Optimal Colour Theorem involves the following character-
ization: every vertex of a zonohedron is the sum of all the generators on one side of
a plane through the origin; conversely, the sum of all the generators on one side of a
plane through the origin is necessarily a vertex. In the current context, the zonohe-
dron of interest is an object-colour solid, and the generators are the spectrum locus
vectors. Any particular spectrum locus vector corresponds to a basic reflectance
function Ri(λ), for some i. One can make the approximation (which becomes exact
as N →∞) that optimal colours, when expressed in XY Z coordinates, are identical
with the vertices of the zonohedral object-colour solid. Then, by the characteriza-
tion of vertices, optimal colours, in XY Z space, are sums of spectrum locus vectors.
Since spectrum locus vectors correspond to reflectance functions of the form Ri(λ),
the reflectance function of an optimal colour must be a sum of such Ri’s. One sees
empirically that the spectrum locus vectors are cyclical and well-ordered in XY Z
space. The set of such vectors that are on side of a plane through the origin therefore
correspond to contiguous Ri’s, allowing for wraparound from 700 nm to 400 nm. The
sum of a set of contiguous Ri’s is a reflectance function of Schrödinger form.

Though Schrödinger4 and MacAdam5 do not say so, the Optimal Colour The-
orem requires that the illuminant be nowhere zero. If an illuminant were zero in
some channel, then the reflectance function could take on any value in that channel,
without affecting the colour perception. The Schrödinger form would then have to
be modified to account for this extra freedom.

The fact that an illuminant transformation changes only the magnitudes of spec-
trum locus vectors, and not their directions, implies that optimal colours all have
the same Schrödinger form. Any plane through the origin divides the spectrum locus
into two groups of vectors, and each group sums to an optimal colour of Schrödinger
form. Even if the illuminant is transformed, the directions of the spectrum locus vec-
tors remains constant, so that plane subdivides the new vectors into the same two
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groups. The sum of each group of vectors, which is an optimal reflectance function,
remains unchanged, then, even when the illuminant changes.

Non-metamerism of optimal colours follows similarly. It has been proven3 that
optimal colours are never metameric, as long as no three of the generating spec-
trum locus vectors are linearly dependent. Determinations of linear dependence
and independence rely only on the directions of the vectors involved, and not on
their magnitudes. Calculations show that no three spectrum locus vectors are lin-
early dependent for the CIE standard observer, under illuminant E, whose density is
equal-energy over the visible spectrum. The independence relations are unchanged
when the illuminant is transformed, so two optimal colours will not be metameric.

Again, this result requires that the illuminant be nowhere zero. If some channel
were zero, then the corresponding spectrum locus vector would be the zero vector,
and any three vectors, one of which is the zero vector, is trivially linearly dependent.
As in the Optimal Colour Theorem, the reflectance function could take on any value
in that channel, without affecting colour perception—every different reflectance value
leads to another metamer for that colour.

3.3 Transformation of Object-Colour Solids

When an illuminant changes, the object-colour solid also changes. The previous
section showed that an illuminant change does not affect the reflectance functions
corresponding to the colours on the boundary. In this section, we show that the shape
of the solid at the origin is also unaffected: the object-colour solid for a nowhere-
zero illuminant always fits perfectly inside the spectrum cone. We also present a
sequence of steps for transforming the colour solid for one illuminant into the colour
solid for another illuminant. Each step involves stretching or contracting one zone
of the colour solid. Unlike the other results, the transformation can occur even if the
illuminant is zero on some channels.

An example will demonstrate these assertions. Figure 5 shows two illuminants, s1

and s2, at the far left and far right of the upper row. For simplicity, only four channels
are used, centered at 437.5 nm, 512.5 nm, 587.5 nm, and 662.5 nm. Calculations
will use the values of the illuminant and the colour-matching functions just at these
four wavelengths. The middle three plots show steps in transforming from s1 to s2.
In the first step, shown in the second plot from the left, we change the first channel
from its value for s1, which is 70, to the value of the first channel for s2, which is
100. This change is shown with a thick line. The other three channels of s1 are left
unchanged. In the second step, we change the value of the second channel from its
s1 value, which is 75, to its s2 value, which is 110, while leaving the other channels
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unchanged. The middle plot shows this change with a thick line. After performing
this procedure on all four channels, we arrive at s2, on the far right.

The middle row of Figure 5 shows the spectrum loci for s1 and s2, and for the
three intermediate illuminants. The directions of the four spectrum locus vectors
are identical for all the illuminants, but they differ in magnitude. The magnitudes
are partially determined by the normalizing requirement that the Y -value of ideal
white is 1. The bottom row of Figure 5 shows the object-colour solids for the five
illuminants in the top row. On the far left of the bottom row is the object-colour
solid for s1. It is a zonohedron, so every edge is a translate of a spectrum locus vector.
The zone corresponding to the first channel has been highlighted. It consists of all
faces that contain a copy of the generator v1, which has also been highlighted.

We will study the effect on the colour solid as the illuminants in the top row
transform from s1 to s2. The second plot in the middle row of Figure 5 shows the
spectrum locus vectors after the first step, and the second plot in the bottom row
shows the corresponding object-colour solid. The new solid differs from the original
solid in two ways. First, a different normalizing factor has been used. This factor
changes the overall size of the solid, but not its shape. The second difference is
that the spectrum locus vector for the first channel is significantly longer for s2 than
for s1, taking on values of 100 and 70, respectively. The shape of the colour solid
changes as a result: the first zone is stretched in the direction of the first spectrum
locus vector.

Similar changes occur throughout the remaining three steps. The spectrum locus
vector for the channel under consideration will become shorter or longer, depending
on the values of the illuminants in that channel. If it becomes longer, then the
zone for that vector stretches along the direction of the vector. The two pieces
of the zonohedron on either side of the zone are unaltered individually, but move
farther apart, in the direction of the vector. The zonohedron as a whole stretches
(irregularly) along that zone. If the spectrum locus vector becomes shorter, then the
solid contracts (similarly irregularly) along that zone. Figure 5 shows the sequence
of stretches and contractions, along the highlighted zones, that transform the s1 solid
into the s2 solid.

This algorithm, which transforms the object-colour solid when the illuminant
is transformed, can be extended to any number of channels, rather than just four.
In fact, the illuminants can even be zero on some channels. Transforming from a
non-zero channel to a zero channel would mean eliminating a zone entirely, while
transforming from a zero channel to a non-zero channel would mean adding a new
zone.

The second assertion to be shown is that any object-colour solid, for a nowhere-
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zero illuminant, fits perfectly into the spectrum cone at the origin. A perfect fit
means that any ray contained in the boundary of the spectrum cone is tangent to
the colour solid at the origin. For example, if the Illuminant C colour solid shown in
Figure 3 were drawn on the same axes as the spectrum cone in Figure 2, then each
spectrum locus vector would have tangential contact with the solid at the origin.
Since the cone is irregular, it would be impossible to move the colour solid and still
maintain this contact everywhere.

The colour solids in Figure 5 provide an easy way to see this result. All the colour
solids in that figure are zonohedra, whose generators are spectrum locus vectors. As
noted before, these vectors differ in magnitude, but not in direction. It can be seen
that the edges that meet at the origin are just the spectrum locus vectors. (Reference
2 derived this result more formally; it depends on the fact that the spectrum locus
is cyclic.) The spectrum cone in this simple example would be an irregular square
pyramid whose apex is at the origin, and whose base is infinitely far away. The colour
solid’s faces, that meet at the origin, are Minkowski sums of two locus vectors, so
they are contained in the planar region spanned by positive combinations of those
vectors. The same planar regions are faces of the convex cone generated by the locus
vectors. Since this convex cone is just the spectrum cone, the solid’s faces at the
origin have full contact with the spectrum cone’s faces. Thus the object-colour solid
makes a flush fit inside the spectrum cone. As an example, the object-colour solid
for Illuminant C, shown in Figure 3, can be seen to fit inside the spectrum cone,
shown in Figure 2.

Again, the number of channels is arbitrary; the same arguments hold with a
more practical number, such as 30. It is necessary, however, that no channel be
zero. If an illuminant has a zero channel, then it will not fit snugly inside the
spectrum cone generated from an illuminant where that channel is non-zero, because
the second illuminant’s spectrum cone will contain a spectrum locus vector that the
first illuminant’s spectrum cone lacks.

As an illuminant changes, then, the section near the origin remains fixed in loca-
tion and orientation, although it will stretch or contract in the direction of different
spectrum locus vectors. The ideal white point, which is the farthest point from the
origin, is constrained to lie on the plane Y = 1, but itsX- and Z-coordinates will vary
for different illuminants. If the illuminant changed continuously, then the resulting
series of object-colour solids would also vary continuously, but always remain fixed
snugly within the spectrum cone at the origin. Meanwhile, the white point, far away
from the origin, could be tracing a very complicated path on the plane Y = 1, while
the solid as a whole lengthened and shortened along different rings that encircle it.

Another interesting corollary comes from the fact that a zonohedron has a 180o
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rotational symmetry. It follows from this fact that the white and black points have
the same three-dimensional shape, just rotated in space. Since the shape around the
black point is invariant, the shape around the white point is also invariant, though
its location in XY Z space changes as the illuminant changes.

4 Summary
This paper has identified some properties in XY Z space that do not change, even
when an illuminant changes, under the mild assumption that the illuminant is
nowhere zero on the visible spectrum. The spectrum cone, which is the set of all
XY Z triples that could result from a visual stimulus, is independent of illuminant.
Amongst object colours, the reflectance functions of optimal colours take the same
Schrödinger form, regardless of the light source. Furthermore, no two optimal colours
are metameric. An object-colour solid, which is defined in terms of an illuminant,
will occupy a different subset of XY Z space when the illuminant changes. Still,
every object-colour solid will fit perfectly into the spectrum cone at the origin of
XY Z space, and this property holds for every nowhere-zero illuminant. A colour
solid’s change in shape, under an illuminant change, can be described by a sequence
of stretches and contractions, each of which occurs only on a zone of the solid. The
magnitude of the stretch or contraction depends on the different values of the original
and new illuminant, at the spectrum locus vector that corresponds to that zone.
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