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Abstract

It is known that a reflectance spectrum for an optimal colour takes on the value
0 or 1 at every wavelength, with at most two transitions between those values. This
paper shows that any non-optimal colour can be produced by a reflectance spectrum that
takes on the value 0 or 1 at every wavelength, with at most four transitions. While the
two-transition optimal spectrum is unique, the four-transition non-optimal spectrum is
not unique.

1 Introduction

Colorimetry standardizes the results of a colour-matching experiment, in which a viewer
observes, through an aperture, two colour stimuli against a black background. Typically
the stimuli occupy two semicircles which meet along their diameter. In these experiments,
two stimuli with very different spectral distributions can produce identical colour sensations,
making the semicircles’ colours match. In 1931, the Commission Internationale de l’Éclairage
(CIE) introduced1 a three-dimensional XY Z colour space, and a set of colour-matching
functions which assign a vector in that space to a physical stimulus. Two colour stimuli in an
aperture experiment match if and only if their XY Z coordinates are identical. In colorimetry,
then, although not in more realistic viewing situations where chromatic adaptation comes
into play, one can say that a stimulus has a unique colour given by XY Z. This paper works
in the context of colorimetry, and so considers colours in that sense.

For any illuminant I, the terms defined in colorimetry allow the construction of an object-
colour solid2 ΩI , which is a subset of XY Z space. The object-colour solid for I consists of
all the XY Z coordinates that can be produced when a human views a matte surface that is
illuminated by I. A surface has a reflectance spectrum, which is a function that specifies, for
each visible wavelength (roughly those between 400 and 700 nm) the percentage of incoming
light of that wavelength that the surface reflects. A reflectance spectrum takes on values
between 0 and 100%, or, more simply, 0 and 1. Typically, many different spectra, making
up a metamer set, can produce the same XY Z when illuminated by I.

The colours on the boundary of ΩI are called optimal colours. A well-known result,3,4

referred to here as the Optimal Colour Theorem, states that an optimal colour is produced
only by a reflectance spectrum in Schrödinger form: the spectrum takes on only the values
0 and 1, and there are at most two transitions from 0 to 1 or vice versa. For convenience,
a function that takes on only the values 0 or 1 will be said to have 0-1 form, and the
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standard term support will denote the set of wavelengths where a spectrum has non-zero
reflectance. To provide a further simplification, a three-dimensional geometric interpretation
suggests joining the ends of the spectrum to produce a circular domain of wavelengths; on
the circular domain, the support of an optimal spectrum is an interval, and, excepting ideal
black and ideal white, each optimal spectrum has exactly two transitions. The theorem
includes a converse: any spectrum in Schrödinger form must produce an optimal colour.
Further work5-8 has shown that the reflectance spectrum for an optimal colour is unique.

A natural question is whether any similar simple forms occur for non-optimal colours,
those that are inside the object-colour solid. This situation is more complicated because any
non-optimal colour can be produced by a large metamer set of varied reflectance spectra. This
paper will show, however, that any non-optimal colour can be produced by a 0-1 reflectance
spectrum with four transitions, as opposed to the two that characterize optimal colours.

Four-transition spectra can arise naturally by adding optimal spectra. Two optimal
spectra whose supports do not intersect will be called disjoint. Adding two disjoint optimal
spectra produces a 0-1 function whose support consists of two intervals. This spectrum has
four transitions, one at the endpoint of each interval. Given a non-optimal colour, in the
interior of an object-colour solid, we will find two disjoint optimal colours, on the boundary
of the solid, whose vectors in XY Z space sum to the vector of the non-optimal colour in
that space. It then follows that the sum of the reflectance spectra, which is a four-transition
0-1 function, must be metameric to the non-optimal colour, proving the result.

The selection of the pair of disjoint optimal colours, which is not unique, uses the con-
vexity and central symmetry of object-colour solids.6 Any section of the solid that contains
the center, the origin, the white point, and the non-optimal colour, is also convex and cen-
trally symmetric. The colours on the boundary of the section must be optimal colours on
the original object-colour solid, and the non-optimal colour is interior to the section. The
symmetry will allow pairs of disjoint optimal colours to be characterized geometrically, and
a construction involving translations will show that any vector in the interior is the sum of
two vectors, given by disjoint colours, on the boundary.

The paper is organized as follows. After the introduction, the perception of object or
surface colours is formulated geometrically. Object-colour solids are of particular interest;
their convex, centrally symmetric strucutre, and the inheritance of that structure by central
sections of the solid, are described. Reflectance spectra are expressed in a circular form, which
simplifies the counting of transitions, and implies that any optimal spectrum (excepting black
and white) is a 0-1 function with exactly two transitions. An expression of a four-transition
0-1 function as the sum of two disjoint two-transition 0-1 functions is given. The geometric
constructions involving a section of an object-colour solid are then used to write an arbitrary
non-optimal colour as the vectorial sum of two disjoint optimal colours in XY Z space, from
which the main result of the paper follows: the metamer set of an arbitrary non-optimal
colour contains a four-transition 0-1 reflectance spectrum. The paper closes with a summary.
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2 Geometric Formulation

2.1 Reflectance Spectra

An object’s colour is perceived when light reflects off that object and enters a viewer’s
eye. The light must be in the visible spectrum, and can be described by a spectral power
distribution (SPD), which is a density function over the visible spectrum; integrating this
function over any interval gives the power of the light in that interval. The boundaries of the
visible spectrum are not hard and fast, and this paper will use 400 and 700 nm. Other sources
use different values, such as 360 and 760 nm; the development in this paper can readily be
extended to accommodate different endpoints. In addition, for consistency with colorimetry,
reflection will be assumed to be matte, also known as diffuse or Lambertian, rather than
specular. An illuminant is an SPD that gives the relative power of a light source at various
wavelengths. Illuminants are used rather than absolute SPDs, because the intensity of a
light typically varies over a scene, while its SPD’s shape remains the same.

When light strikes an object, some of that light is reflected, and the rest is absorbed
or transmitted, the proportions of each outcome varying with wavelength. An object’s
reflectance spectrum gives the percentage of light that that object reflects, as a function
of the visible wavelengths. A spectrum is bounded between 0 and 100%, or equivalently,
between 0 and 1. An object modifies the SPD of incoming light, by reflection in accordance
with its spectrum, to produce a new SPD, which arrives at an observer.

The CIE 1931 Standard Observer1 systematizes human perception of an incoming SPD.
This standard gives three colour-matching functions (x̄(λ), ȳ(λ), and ȳ(λ)), each of which is
linear on the set of SPDs. The function’s outputs are three non-negative CIE coordinates,
denoted X, Y, and Z, which can be seen as a vector in R3. A viewer in a colour-matching
experiment will perceive that two SPDs have the same colour if and only if their XY Z
coordinates are equal. (In more realistic settings, chromatic adaptation might cause percep-
tual differences, but this paper is restricted to the setting of standard colorimetry.) Two
reflectance spectra that produce the same colour perception are called metamers, and the
set of all reflectance spectra that produce the same XY Z when viewed under a certain
illuminant I are called the metamer set of XY Z for I.

2.2 Object-Colour Solids

Not all XY Zs are possible, because there might not exist any SPD which produces a partic-
ular XY Z. Furthermore, not all XY Zs involve an object: an observer can also view a light
source directly, without any intermediate reflection. The set of all possible XY Zs that do
result when an illuminant I strikes an arbitrary matte object is called the object-colour solid
ΩI for I, and is a subset of R3.

Even though different illuminants lead to different solids, all object-colour solids share
some geometric features. For instance, they all start at the origin, which corresponds to the
reflectance spectrum that is identically 0; such an ideal black object would reflect no light
at all. At its brightest, on the other hand, each solid terminates at an ideal white point,
corresponding to the reflectance spectrum that is identically 1. The origin and white point
are extreme vertices of the solid. By linearity, the line segment joining them, called the
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neutral axis, is also part of the solid.
Every object-colour solid, furthermore, is convex, and centrally symmetric about XY Z0.5,

the vector that results from the reflectance spectrum that is 0.5 at every wavelength. A set
S is convex if the line segment between any two points in S is also contained in S. Convex
sets therefore admit no bumps, indentations, holes, or internal cavities. By linearity, XY Z0.5

lies on the neutral axis, halfway between the origin and the white point. Since convexity
and central symmetry will be needed later, we will demonstrate them directly.

To show that ΩI is convex, choose any two of its points; denote them XY Z1 = (X1, Y1, Z1)
and XY Z2 = (X2, Y2, Z2). Then a point on the line segment between them is a vector
XY Zα = (Xα, Yα, Zα) of the form

(Xα, Yα, Zα) = α(X1, Y1, Z1) + (1− α)(X2, Y2, Z2), (1)

where α is between 0 and 1. Since XY Z1 and XY Z2 are both in ΩI , they must result from
reflectance spectra ρ1 and ρ2. Now construct a new reflectance spectrum

ρα = αρ1 + (1− α)ρ2. (2)

Since X, Y, and Z are linear functions of reflectance spectra, it follows that

X (ρα) = αX (ρ1) + (1− α)X (ρ2) , (3)

Y (ρα) = αY (ρ1) + (1− α)Y (ρ2) , (4)

Z (ρα) = αZ (ρ1) + (1− α)Z (ρ2) , (5)

so the XY Z coordinates for ρα are just as given in Equation (1). Since these coordinates
result from the reflectance spectrum ρα, they must occur in the object-colour solid. This
argument applies to any α, so the entire line segment is contained in the object-colour solid,
proving convexity.

Central symmetry, about the coordinates XY Z0.5 of the reflectance spectrum

ρ0.5(λ) = 0.5, (6)

whose value is uniformly 0.5 at every visible wavelength λ, can also be shown directly.
Consider an arbitrary point XY Z1 in an object-colour solid. Then it resulted from some
reflectance spectrum ρ1. Now define the reflectance spectrum

ρ2(λ) = 1− ρ1(λ). (7)

Then

ρ2(λ) + ρ1(λ) = 1 (8)

0.5 (ρ2(λ) + ρ1(λ)) = 0.5, (9)

so

ρ0.5(λ) = 0.5 (ρ2(λ) + ρ1(λ)) . (10)

After applying the linear transformations X, Y, and Z, to both sides of Equation (10), we
find that XY Z0.5 is exactly halfway between XY Z1 and XY Z2. Therefore the point XY Z2

is diametrically opposite XY Z1, relative to XY Z0.5. Since the point XY Z1 was arbitrary,
every point of the object-colour solid has such a diametrically opposite, or complementary
point, so an object-colour solid is centrally symmetric, as was to be shown.
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2.3 Optimal Colours

As mentioned earlier, a particular XY Z can be produced by a metamer set of reflectance
spectra. Since the set of reflectance spectra has many degrees of freedom, while CIE XY Z
space only has three, metamer sets are often very large: a surprisingly wide variety of
very different spectra can produce the same XY Z. An important exception to this case
occurs for the colours on the boundary of an object-colour solid, which are known as optimal
colours. The Optimal Colour Theorem, which Schrödinger3 stated and proved in 1920, and
MacAdam4 derived by a physics-based approach in 1935, states that the reflectance spectrum
for an optimal colour must have Schrödinger form: it takes on only the values 0 and 1, with
at most two transitions between those values.

Schrödinger3,10 classified the optimal colour spectra into the four forms shown in Figure
1, depending on the number and locations of transition wavelengths. The first form, in the
upper left, has one transition, and takes on the value 1 between 400 nm and that transition.
The second form, in the upper right, also has one transition, but takes on the value 1 to the
right of the transition. The third form, in the lower left, has two transitions, between which
it is 1, and outside which it is 0. The fourth form also has two transitions, but is 0 between
them, and 1 outside.

These four forms can be conveniently subsumed into one form,9 by joining the ends of the
visible spectrum, at 400 and 700 nm, to form a circle. On the circle, the reflectance function
for any optimal colour fills out a sector of an annulus, with one transition wavelength where
the sector starts, and another where the sector ends. In the first form, the sector starts at
400 nm (which is also 700 nm). In the second form, the sector ends at 400 (or 700) nm. In
the third form, the sector does not cross the 400 nm mark. In the fourth form, the sector
starts before 700 nm, continues clockwise across 700 nm, which is also 400 nm, and then
fills out some of the clockwise side of the 400 nm mark. An optimal reflectance spectrum
takes on value 1 at wavelengths whose spectrum locus vectors are summed up to produce
that optimal colour, and the Optimal Colour Theorem says that those wavelengths must lie
along an interval of the circular spectrum locus.

In the circular form, any of the four cases in Figure 1 results in exactly two transitions.
Equivalently, we could count an extra transition in Figure 1 whenever the spectrum is 0 at
the left end and 1 at the right end, or vice versa. With this understanding, it is impossible
for a spectrum to have exactly one transition, or indeed any odd number of transitions.
Only the spectra for ideal white and ideal black have zero transitions. If we leave aside these
two special cases, then the Optimal Colour Theorem says that a reflectance spectrum for an
optimal colour must be a 0-1 function with exactly two transitions.

The converse of the Optimal Colour Theorem also holds: any reflectance spectrum in
Schrödinger form produces an optimal XY Z, on the boundary of ΩI . Further work has
strengthened this theorem to include uniqueness: exactly one reflectance spectrum produces
a particular optimal colour. (The history of the proof of uniqueness is unclear. In a footnote
to a 2009 paper,7 A. Logvinenko refers to a proof in an unpublished manuscript8 that was still
under preparation. An explicit proof of uniqueness,5 which relies on some empirical findings
of linear independence, was given in 2012; an extended discussion of the 2012 derivation
appears in Ref. 6.) Uniqueness implies that the metamer set of an optimal colour consists
of a single reflectance spectrum.
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Figure 1: Four Forms for Optimal Colour Functions

Figure 2: Circular Form for Optimal Colour Functions

A natural question is whether similar characterizations exist for non-optimal colours,
those that are interior to ΩI . This paper will provide such a characterization: every metamer
set for a non-optimal colour contains at least one 0-1 reflectance spectrum with exactly four
transitions. Unlike in the optimal case, however, the four-transition 0-1 spectrum is not
unique, and, of course, many more metamers take on values besides 0 and 1.

2.4 Sections of an Object-Colour Solid

The derivation of the four-transition 0-1 result will consider not just object-colour solids, but
also sections of those solids, in particular the sections given by intersecting the solid with
a plane that contains both the origin and the white point. Since such a plane contains the
central point, the section must be centrally symmetric. Since the solid and the cutting plane
are both convex, the section is also convex. Figure 3 shows an example, with the origin
labeled 0 and the white point labeled w. The center is also indicated. For convenience, the
boundary of the section can be divided into upper and lower parts.

c© 2018 Paul Centore 6
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Figure 3: A Section of an Object-Colour Solid, Containing the Origin and White Point

The points on the boundary of the section are also on the boundary of the object-colour
solid, so the Optimal Colour Theorem says that they have unique reflectance spectra in
Schrödinger form. At the origin, of course, the spectrum is identically 0 (i.e. its support
is empty), while at the white point it is identically 1 (i.e. its support consists of all visible
wavelengths). As one moves along either part of the boundary from 0 to w, the support
must always be an interval (allowing for wraparound), and it expands smoothly, sometimes
to the left and sometimes to the right and sometimes to both left and right simultaneously,
until it fills the spectrum from 400 to 700 nm. The support at any one point is always a
proper subset of the support at a later point on that part of the boundary.

Though the starting and ending intervals for the upper and lower boundaries are the
same, the intermediate intervals can be very different. In fact, the symmetry implies a
complementary relationship. Let A and B be two diametrically opposite boundary points
on the upper and lower parts, as shown in Figure 4. Since they are symmetric about the
center, their sum must be identically 1, which is the spectrum for ideal white:

ρw = ρA + ρB. (11)

The reflectance spectra for A and B are complements: ρA is 1 wherever ρB is 0, and 0
wherever ρB is 1. A corollary is that ρB is disjoint from any point on the boundary between
0 and A, where two spectra are said to be disjoint if their supports have empty intersection.

3 Derivation of Main Result

This section will derive the main result of this paper: the metamer set of any non-optimal
colour contains a four-transition 0-1 reflectance spectrum. First, a four-transition 0-1 func-
tion will be constructed as the sum of a pair of disjoint Schrödinger functions. Then, such
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Figure 4: Two Diametrically Opposite Points on a Section of an Object-Colour Solid

a pair will be found geometrically, in a section of the object-colour solid, that sum to an
arbitrary non-optimal colour. The result follows.

3.1 Constructing Four-Transition 0-1 Functions

Suppose we have two disjoint optimal colours, γ1 and γ2. Then the supports of their re-
flectance spectra ρ1 and ρ2 are two non-intersecting intervals, and their sum is a third
spectrum:

ρ = ρ1 + ρ2. (12)

Note that the sum of two reflectance spectra is not generally another reflectance spectrum,
because the sum could result in values that are greater than 1; the non-intersecting intervals
avoid that problem in this case. The non-intersection also implies that ρ must have exactly
four transitions, and of course ρ only takes on the values 0 and 1.

Geometrically, γ1 and γ2 are two XY Z vectors in R3, on the boundary of ΩI . They can
be added to produce a third vector

γ = γ1 + γ2. (13)

By linearity, the reflectance spectrum ρ must be in the metamer set of γ. Since ρ has more
than two transitions, the Optimal Colour Theorem implies that γ cannot be on the boundary
of ΩI . Since ρ is a physically possible object colour, however, γ must belong to ΩI , and is
therefore a non-optimal, interior colour, for which Equation (13) provides a four-transition
0-1 function.
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Figure 5: Disjoint Optimal Spectra that Sum to γ

3.2 Finding Disjoint Optimal Colours

Rather than starting with optimal colours, this section starts with a non-optimal colour γ in
the interior of ΩI , and shows the existence of a four-transition 0-1 metamer for γ by finding
disjoint optimal colours γ1 and γ2 that sum to γ. Begin by constructing the plane P which
contains γ, the origin, and the white point. (If γ is on the neutral line joining the origin
and the white point, then there are many such planes; choose any one.) Figure 5 shows the
section ΩI ∩ P , with the point γ in its interior.

The desired vectors γ1 and γ2 must satisfy Equation (13). They are optimal, so they are
on the boundary of ΩI , and will also appear on the boundary of the section. They will be
chosen to be disjoint; one will be on the lower boundary of the section, and the other will
be on the upper boundary. A geometric test will tell us whether a given γ1 on the lower
boundary is disjoint from a γ2 on the upper boundary. Start with γ1 as shown in Figure
5, and construct the complementary colour γ̄1. Considering the colours as vectors, we must
have

w = γ1 + γ̄1, (14)

while considering the colours as reflectance spectra gives

ρw = ρ1 + ρ̄1, (15)

where ρw is the ideal white spectrum, which is identically 1.
Now consider any point γ2 that is on the upper boundary between 0 and γ̄1. Then γ2

is also optimal, and, as shown earlier, its support must be a proper subset of the support
of γ̄1. The sum γ1 + γ2 is therefore a four-transition, 0-1 function which is contained in the
section. As γ2 varies from 0 to γ̄1, the set of sums γ1 + γ2 will trace out a translated copy
of the part of the upper boundary between 0 and γ̄1; the copy starts at γ1 and ends at w,
given by γ1 + γ̄1. Any point on this copy can be written as a four-transition, 0-1 function.
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The final step in the construction is now straightforward: if one pictures the upper
boundary sliding along the lower boundary, it is clear that the entire section will be swept
out, and in particular any desired γ inside the section will sooner or later be reached. When
a desired γ is reached, then choose as γ1 the point where the translated copy originates
on the lower boundary, and let γ2 be the difference of γ and γ1. These optimal colours are
disjoint and sum to γ as was to be shown.

While proving the existence of a four-transition, 0-1 metamer, the construction should
also make it clear that these metamers are not unique. A simple example of non-uniqueness
would involve the center point itself, or indeed any colour on the line segment between 0
and w. There are many choices of a section for these cases, and any section will give a pair
of optimal colours that do not occur in the other sections. The sums of these pairs will
therefore also be distinct as reflectance spectra, although they all produce the same XY Z.
For a point not on the central segment, one could choose a section that contained 0 and that
point, but not w. Since many of the sums of pairs of optimal colours on the boundary of that
section would still be within the colour solid, they would provide alternate four-transition
0-1 metamers for many non-central colours. In general, then, four-transition 0-1 reflectance
spectra would not be unique for non-optimal colours.

4 Discussion

The four-transition 0-1 functions described here stemmed from a paper of Logvinenko, Funt,
and Godau,11 who used five-transition 0-1 functions (which would have six transitions by
our way of counting) for reflectance spectra, in an algorithm to construct metamer mismatch
bodies2 (MMBs) for imaging sensors. MMBs involve two illuminants, and a six-dimensional
object that might be called a double object-colour solid, originally introduced by Eugene
Allen,12 was constructed, to account for both illuminants simultaneously. The boundary of
a six-dimensional body is five-dimensional, motivating their choice of five transitions. While
a sound modeling decision, questions naturally arose about whether, as in Schrödinger’s
original result, certain forms were geometrically inevitable, or could be shown mathematically
to be adequate. The results of this paper are a first step in addressing these questions; it is
hoped that further development along these lines will be useful in applications.

5 Summary

In analogy to the two-transition 0-1 Schrödinger form for optimal colours, the current paper
has shown that every non-optimal colour is metameric to the colour produced by a four-
transition 0-1 reflectance spectrum. Although the Schrödinger form is unique for optimal
colours, the four-transition form is not unique for non-optimal colours. The demonstration of
these results used the convexity and symmetry of object-colour solids, and the concomitant
convexity and symmetry of central sections of those solids, to express an arbitrary non-
optimal colour as the sum, in CIE XY Z space, of two optimal colours with non-intersecting
support. The corresponding algebraic sum of the optimal reflectance spectra is then a four-
transition 0-1 spectrum as desired.
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